

RE-USE OPTIONS OF VENEZUELAN BAUXITE RESIDUE: POTENTIAL APPLICATION IN ACID MINE DRAINAGE REMEDIATION

Brenda Omaña Sanz, Arnaud Gauthier

The Venezuela Alumina

Study of the sorption properties of acid neutralised bauxite residue (solid residue) under acid conditions similar to those of acid mine drainage

1

- Adsorption capacity => Batch tests

Zn²⁺, Pb²⁺, As (V) arsenate

- Chemical speciation => Sequential chemical extractions

Adsorption capacity of BR

Langmuir adsorption plots for arsenate, lead and zinc. Reaction conditions: bauxite residue dosage 50g.L-1, Ionic strength= KNO3 0.01M, pH 4.5 ± 0.1 and temperature of $22\pm1^{\circ}$ C

- Pb and As(V) distributions follows the Langmuir model
- BR could adsorb more arsenate => at the highest As (V) initial concentration the percentage of adsorption by the residue was at 99 %
- Two different mechanisms operate for Zn sorption: Surface mechanism (adsorption) and co-precipitation (formation of a Zn-Al hydroxide)

Chemical speciation

Associated with Fe and Al hydroxides <=> Adsorption sites

Amorphes Al-Fe-hydroxides = Higher specific surface area / porosity

Conclusions

- The adsorption is the main retention mechanism of As(V), Pb and Zn by the BR. The co-precipitation should not be neglected, especially for Zn
- The Venezuelan bauxite residue could be a useful retention agent for the treatment of acid mine drainage polluted by Pb, Zn and As(V)

Thank you for your attention

