BR Valorisation Symposium, 5-7 October 2015

Carbothermic Reduction of Red Mud in an EAF and subsequent Recovery of Aluminum from slag by Pressure Leaching in Caustic Solution

Frank Kaußen, Bernd Friedrich

Motivation and Overview

Red mud composition

Main components in wt%	Al_2O_3	Fe ₂ O ₃	SiO ₂	CaO	TiO ₂	Na ₂ O	Cr_2O_3
Red Mud	27	28.5	13.1	3.8	8	7	0.35

Carbothermic Reduction in EAF

- Addition of lignite coke as reductant
- Addition of lime as flux
- → Aim: Preconcentration of alumina and maximum recovery of iron

Pressure leaching of ground slag

- Various caustic soda concentrations (200-760 g/l)
- \circ NaF₂ (50 g/l) and Na₂CO₃ (10 wt.-%) Addition
- → Aim: Maximum recovery of alumina

Results carbothermic reduction and leaching

Main components in wt%	Al_2O_3	Fe ₂ O ₃	SiO ₂	CaO	TiO ₂	Na ₂ O	Cr_2O_3
Red Mud	27	28.5	13.1	3.8	8	7	0.35
Slag with lime addition	40	1.1	18	29.1	11	2.8	0.07
Slag without lime addition	50	2.3	20.7	7.7	13.8	7.7	0.14
Leached Residue	2.2	0.5	20.7	38.7	18.2	11.9	0.09

- Maximum preconcentration up to 50 wt.-% without lime addition, but higher iron losses due to high slag viscosity
- 95 % aluminum recovery at NaOH > 550 g/l @ 250°C
- Leached residue contains only ~2 wt.-% Al₂O₃ and ~0.5 wt.-% Fe₂O₃

Results Fluoride addition

- Fluoride addition does not hinder the alumina recovery
- Silica dissolution is fastend
- Intensified silica precipitaion during the leaching at lower NaOH concentrations (< 300 g/l)
- → At the end lower silicon contents in leach liquor

BR Valorisation Symposium, 5-7 October 2015

Thank you for your attention!

