Soda Sintering Process for the Mobilization of Aluminum and Gallium in Red Mud

Frank Kaußen, Bernd Friedrich
Motivation

Red Mud from landfill Lünen (ex VAW), Germany contains high amounts of aluminum → Utilization as alumina and gallium source

<table>
<thead>
<tr>
<th>Components in wt.-%</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
<th>CaO</th>
<th>TiO₂</th>
<th>Na₂O</th>
<th>Cr₂O₃</th>
<th>Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Mud</td>
<td>27</td>
<td>28.5</td>
<td>13.1</td>
<td>3.8</td>
<td>8</td>
<td>7</td>
<td>0.35</td>
<td>65 ppm</td>
</tr>
</tbody>
</table>

- **Requirements for processing:**
 - High recoveries of gallium and aluminum
 - High selectivity (low effort for purification)
 - Stable and simple process

- **Aim of the treatment:**
 - Aluminum recovery: > 80 %
 - Gallium recovery: > 80 %
Extraction Processes

- **Bayer-Process**
 - simple and economical process
 - High selectivity
 - poor aluminum recoveries at mild digestion conditions

- **Acidic leaching**
 - Simultaneous leaching of minor elements
 - Not selective → Need of leachate purification
 - Losses of acid due to alkaline red mud

- **Na$_2$CO$_3$ Sintering (Dry digestion)**
 - High selectivity and Al-recoveries
 - Cost-intensive: Energy, grinding, Na$_2$CO$_3$ recovery
Thermodynamic basics: Soda fusion

Principle: Soda-potash fusion

→ Silicates and metal oxides are digested in fused salt

For trivalent ions like Al2O3

\[
\text{M}_2\text{O}_3(\text{s}) + \text{Na}_2\text{CO}_3(\text{s}) \rightleftharpoons 2 \text{NaMO}_2(\text{s}) + \text{CO}_2(\text{g})
\]

\[
\text{M}_2\text{SiO}_5(\text{s}) + 3 \text{Na}_2\text{CO}_3(\text{s}) \rightleftharpoons 2 \text{NaMO}_2(\text{s}) + 3 \text{CO}_2(\text{g}) + \text{Na}_4\text{SiO}_4(\text{s})
\]

For tetravalent ions like TiO2, SiO2

\[
\text{MO}_2(\text{s}) + \text{Na}_2\text{CO}_3(\text{s}) \rightleftharpoons \text{Na}_2\text{MO}_3(\text{s}) + \text{CO}_2(\text{g})
\]

→ equilibrium constant can be influenced by the CO2 partial pressure

CO2 partial pressure can be reduced by carbon addition due to

Boudouard reaction: \(\text{CO}_2(\text{g}) + \text{C}(\text{s}) \rightleftharpoons 2 \text{CO}(\text{g}) \)

→ Carbon addition shifts equilibrium to water soluble compounds
Thermodynamic basics: Lime addition

Principle: Immobilization of reactive silica

- Silica from split (sodium)aluminum silicates (DSP) is bonded by lime to insoluble calcium silicates

\[
2 \text{Ca(OH)}_2(aq) + \text{Si(OH)}_4(aq) \rightleftharpoons \text{Ca}_2\text{SiO}_4(s) + 4 \text{H}_2\text{O}(l)
\]

- Less dissolved silica in solution

Attention: Too much lime leads to formation of hardly soluble calcium aluminates

For comparison molar ratio C/S:

\[
\frac{\text{CaO}}{\text{SiO}_2}
\]
Process flowchart and Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$CO$_3$</td>
<td>15 - 80 wt.-% of Red mud input</td>
</tr>
<tr>
<td></td>
<td>Stoichiometric: Al$_2$O$_3$: 16%</td>
</tr>
<tr>
<td></td>
<td>Al$_2$O$_3$ + TiO$_2$: 28%</td>
</tr>
<tr>
<td></td>
<td>Al$_2$O$_3$ + TiO$_2$ + Fe$_2$O$_3$: 47%</td>
</tr>
<tr>
<td>Lime (C/S)</td>
<td>0.35 – 1.5</td>
</tr>
<tr>
<td>Carbon addition</td>
<td>0, double stoichiometric Fe$_2$O$_3$ \rightarrow Fe</td>
</tr>
<tr>
<td>Temperature</td>
<td>480 – 1070 °C</td>
</tr>
</tbody>
</table>
Sintering

- Resistance heated furnace:
 - 330 ml clay crucible
 - Air atmosphere
 - Continuous temperature control by 3 type K thermocouples
 - Holding time at process temperature to maintain equilibrium
Leaching

- Crushing in disc mill
- Agitated leaching
 - 50 °C (exothermic reaction with water)
 - 100 g red mud with additives in 640 ml water (avoiding solubility limit)
 - Leaching time 30 min
- Instant vacuum filtration after leaching
Results: Recoveries of Al and Ga

- At 1000 °C; C/S = 1.3
- Soda addition < 60 %: Increasing recovery of Al and Ga
- Soda addition > 60 %: Falling recovery of Al & Ga

- 15 % coke (double stoichiometric \(\text{Fe}_2\text{O}_3 \rightarrow \text{Fe} \))
- At 60 % \(\text{Na}_2\text{CO}_3 \); C/S = 1.4
- Increasing recovery of Al and Ga with increasing temperature up to 1070 °C
- Addition of carbon improves Al and Ga recovery by 10 - 15 %
Results: Recoveries of Al and Ga

- With 60% Na₂CO₃ addition
 - C/S < 1.1: Increasing recovery of Al
 - C/S > 1.1 slightly falling Al recovery
 - Ga recovery falling with increasing C/S

- With 60% Na₂CO₃ addition
 - Lower concentration of dissolved silicon with higher C/S
 - Silicon concentration very low → good selectivity
Summary

- Na$_2$CO$_3$ addition sufficient for the total transformation of Fe$_2$O$_3$, TiO$_2$ and Al$_2$O$_3$ into sodium compounds (> 50 %) is necessary for a complete aluminum extraction.
- C/S rations > 0.8 lower the concentration of dissolved silicon in the liquor significantly.
- C/S ratio of 1.2 seems to be the best for aluminum recovery.
- Higher C/S ratios lower the Ga recovery.
- Carbon addition improves Al and Ga recovery by 10-15 %.
- Sinter temperature should be in the range of 1050-1100 °C.
- Best Recoveries

Al: 84 % ; Ga: 85 %
Thank you for your attention!